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Shape selection in chiral ribbons: from seed pods to
supramolecular assemblies†

Shahaf Armon, Hillel Aharoni, Michael Moshe and Eran Sharon*

We provide a geometric-mechanical model for calculating equilibrium configurations of chemical systems

that self-assemble into chiral ribbon structures. The model is based on incompatible elasticity and uses

dimensionless parameters to determine the equilibrium configurations. As such, it provides universal

curves for the shape and energy of self-assembled ribbons. We provide quantitative predictions for the

twisted-to-helical transition, which was observed experimentally in many systems, and demonstrate it

with synthetic ribbons made of responsive gels. In addition, we predict the bi-stability of wide ribbons

and also show how geometrical frustration can cause arrest of ribbon widening. Finally, we show that

the model's predictions provide explanations for experimental observations in different chemical systems.
Introduction

Many chemical systems in solution undergo self-assembly of their
molecular elements into energetically preferred aggregates such as
vesicles, bers, tubes or sheets. In some cases, the generated
structures take the shape of thin ribbons, which grow in width and
length during the self-assembly process. Experiments show that
depending on the building blocks and the environment, these
ribbons take various three-dimensional (3D) shapes.1 In particular,
some of these congurations are chiral, i.e. break the right–le
symmetry.2 Onemight think that this chirality is directly related to
the micro-chirality of the building blocks. However, in some pure
enantiomeric systems le- and right-handed ribbons were found
in coexistence,3 and the chirality was also observed in systems
without any chiral elements.4 The chiral ribbons may be either
purely twisted, i.e. have a straight midline, or helical, i.e. their
midline draws a helix in space (Fig. 1a). In some cases, morpho-
logical transitions occur during the growth; the molecules initially
assemble into twisted ribbons, which later, as their width
increases, transform into helical shapes.5,6 Later on, given enough
time and building blocks, themolecules may close into tubes.7,8 In
other cases, there is no transition and the twisted ribbons are
found to be stable.8 Twisted and helical supramolecular structures
are found in a wide range of natural systems. In some cases, their
formation and evolution are of high medical signicance, for
example cholesterol in bile that aggregates into gallstone3 and
amyloid brils that assemble in the brain of Alzheimer patients.9

Some models of such systems used the formalism of liquid
crystal physics, dominated by the bending and twisting of the
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director eld, as well as the surface tension.2,8,10,11 In this
continuum description the chirality of the elements together
with the smectic phase tilt introduced a spontaneous twist to the
assembled ribbon. These models predict some of the observed
phenomena, but do not explain others, such as the transition
from twisted to helical shapes. Newer approaches suggested that
some of the systems are not purely liquid membranes. Trans-
lational and orientational order of the molecules within the
membrane resulted in the emergence of a stretching term, and
allowed spontaneous twists even without the tilt anisotropy.
Selinger et al.12 used such an approach to numerically show a
smooth twisted-to-helical transition. In these simulations it was
shown in addition that the handedness of the macro-structure
may differ from that of the micro-constituents. Ghafouri and
Bruinsma13 showed that by taking into account the different
scaling behavior of the stretching and bending energies, a second
order twisted-to-helical transition is predicted. In both models
orientational order was assumed such that the spontaneous twist
was aligned with the ribbon axis.

These theoretical studies pointed out that shape selection in
self-assembled chiral supramolecules may involve a geometrical
frustration, and thus a competition between bending and stretch-
ing. Thebending energy isminimal in twisted congurations,while
the stretchingenergy isminimal inator cylindrical congurations.
Quantitative experimental studies of this transition6,14 provided
data far more detailed than the available theoretical predictions.
Currently, there is no theoretical study that provides a quantitative
link between the chemical input, i.e. geometry of the building
blocks, and the properties of the macro-structure.

From seed pods to supramolecular
structures

Surprisingly, chiral congurations and transitions, seen in the
chemical systems described above, have been observed in a very
Soft Matter, 2014, 10, 2733–2740 | 2733
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Fig. 1 (a) Cryo-TEM images of assemblies of the synthetic amphiphile
c12-b12 taken from ref. 19. Given the right conditions, the aggregates
evolve from twisted configurations (left) into helical ribbons and to
tubes (right). Scale bar: 100 nm. (b) Twisted and helical configuration of
dry Acacia seed pods. (c) A saddle has no chirality, but curves on it do.
The two asymptotic lines (solid) contain pure twist in two opposite
directions: the normal to the surface along the curve is rotating
rightwards or leftwards. The two principal curvature curves (dashed)
contain curvature only and no twist. The angle q for a specific strip is
defined relative to the principal positive curvature direction. (d) The
spontaneous curvature tensor �bwritten in the two different coordinate
systems illustrated. Pure twist, as in the molecular system, and a
saddle-like curvature, as in the pods, are analogous. They differ only by
a rotation of coordinates.
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different context – plant seed pods. A seed pod is a solid elastic
system, of macroscopic dimensions. Upon dehydration the
originally at pod valves curl into two helices of opposite
handedness, leading to pod opening and seed dispersal (see
Fig. 1b and M1†).

The morphological transitions of the pod valves were quan-
titatively studied,15 both experimentally, in actual pods and in
synthetic latex models, and theoretically using the framework of
incompatible elasticity.16,17 The latex sheets do not contain
chiral elements and have no natural handedness, however they
do attain chiral macroscopic congurations. It was argued that
seed pods are governed by the same mechanism.

Seemingly, the solid macroscopic non-chiral system and the
microscopic self-assembled molecular system do not have
much in common. The seed pod valve is a ribbon composed of
two brous layers oriented in two perpendicular directions
(�45� with respect to the pod's longitudinal axis). Upon dehy-
dration each layer shrinks perpendicularly to the ber orienta-
tion, inducing spontaneous curvature. As the orientations of
bers in the two layers are perpendicular to each other, the
combined result is a spontaneous saddle-like curvature. In
contrast, most of the curling supramolecular structures contain
chiral elements and some of them are monolayers. How can
such different systems be related?
2734 | Soft Matter, 2014, 10, 2733–2740
To show the connection, we point to the fact that the
curvature of a surface is a tensorial eld, having different values
along different directions at every point. At each point on the
surface one can nd the principal directions of this tensor.
These directions mark directions of the maximal and minimal
curvatures, marked k1 and k2. In a coordinate system that is
locally aligned with its principal directions the curvature tensor
is diagonal. For the pod valve, the spontaneous curvature is
saddle-like. The principal directions are �45� with respect to
the pod's longitudinal axis, and k1, k2 ¼ �k0, expressing the
tendency to bend up/down in some value k0 (Fig. 1c). Therefore,
in this coordinate system the spontaneous curvature tensor is
written as:

b ¼
�
k0 0

0 �k0

�
(1)

However, one can write �b in a coordinate system that is
aligned with the natural axes of the pod valve – the 0� and 90�

directions. This can be easily done by rotating �b in 45�:

b ¼ RT

�
k0 0

0 �k0

�
R ¼

�
0 k0
k0 0

�
(2)

where R is a 45� rotation matrix.
The new expression for the spontaneous curvature tensor

contains non-diagonal matrix elements only, reecting a pure
tendency to twist at rate k0 along the new axes. This sponta-
neous twist is of opposite handedness along the long and the
short axes (Fig. 1c). This is exactly the property of a strip that is
assembled from chiral elements oriented along its long axis
(Fig. 1d). Hence, we obtained a geometrical equivalence
between sheets with spontaneous twists and sheets with a
spontaneous saddle-like curvature. This equivalence implies
that a layer of twisted elements, as in paper sheets18 or in many
chemical systems,8,9,19 represents the exact same geometro-
elastic problem as a local saddle-like sheet, or as the seed pod.
Based on this equivalence, we apply the same formalism we
used to describe seed-pods15 to derive specic quantitative
predictions for shape selection and mechanical behavior of
some chiral self-assembled structures.

Formulation of the elastic problem

In our dimensionally reduced formulation, a thin sheet is
modeled as a two-dimensional surface that has both elastic
bending and stretching energies. As the length scales of the
assembled ribbons are much larger than those of the single
molecule, we treat the system as continuous. In this work the
membranes' elastic moduli are assumed to be isotropic,
although the same framework can accommodate a more elab-
orate elastic tensor (see ref. 16).

In the self-assembled systems we discuss, the elastic time
scales are many orders of magnitude shorter than the aggre-
gation time scales. We therefore assume the system to be in its
elastic equilibrium state at all times during the aggregation
process.

The conguration of a 2D surface is fully characterized by
two tensors: a metric tensor, a, which contains all information
This journal is © The Royal Society of Chemistry 2014
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‡ In ref. 10, ê, p̂ had a different interpretation (there ê coincides with the smectic
phase tilt direction). However, any such axis rotation leaves eqn (4) unchanged as
it includes all possible terms linear and quadratic in the components of the
curvature tensor.
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about lateral distances between points, and a curvature tensor,
b, which contains information about the local curvatures. An
elastic sheet is characterized by two additional tensors that
reect its intrinsic structure: a reference metric ā, and the
reference (spontaneous) curvature �b. These tensors represent
the lateral distances and curvatures that would make the sheet
locally stress-free.

When a s ā, the sheet contains in-plane stretching defor-
mations, and when b s �b, the sheet contains bending defor-
mations. The total elastic energy is the sum of the stretching
and bending energies

E ¼ Es þ Eb

� Yt

ðh
ð1� nÞTr

�
ða� aÞ2

�
þ nTr2ða� aÞ

i
dS

þYt3
ðh
ð1� nÞTr

�
ðb� bÞ2

�
þ nTr2ðb� bÞ

i
dS

(3)

where dS is the innitesimal surface element, Y is the Young's
modulus and n is the Poisson's ratio of the material. The �
relationship indicates proportionality, where the proportion-
ality coefficients are constant material parameters. The
parameter t represents the thickness of the sheet. In the case of
a molecular monolayer or in cases of extreme anisotropy, the
actual thickness should be replaced by an “elastic thickness”

th

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bending modulus
Stretching modulus

r
.20

Given ā and �b, an elastic system is postulated to minimize its
energy by choosing a conguration with optimal a and b.
Naively, one would expect the system to adopt a conguration in
which a ¼ ā and b ¼ �b, but in some cases this cannot be done.
Every surface in space must fulll the Gauss–Codazzi–Mainardi
equations,21 which relate its metric and curvature tensors.
When the two conditions a ¼ ā and b ¼ �b cannot be satised
simultaneously, the surface is called incompatible and an
equilibrium conguration will be determined by the competi-
tion between stretching and bending. This is the case in the
systems we study: the reference curvature is saddle-like,

b ¼
�
k0 0
0 �k0

�
, while the reference metric is Euclidean (at),

a ¼
�
1 0
0 1

�
. The elastic problem dened by these two tensors

can therefore be referred to as a hyperbolic Euclidean shell
(HES). As ā is Euclidean it prescribes zero reference Gaussian
curvature Kā ¼ 0. However, any surface that obeys �b (i.e. realizes
b ¼ �b) must have Gaussian curvature K�b ¼ �k20 < 0. These
conditions cannot be simultaneously satised and the sheet is
therefore incompatible.

Another parameter that completes the determination of
a HES strip problem is q, the angle between the longitudinal
axis of the strip and the principal directions of the reference
curvature (Fig. 1c). It was shown15,22 that variation of q

leads to different helical congurations from the same
material.

It is interesting to note the close relationship of the bending
term in eqn (3) with the Helfrich–Prost bending energy func-
tional.10 This energy functional, which was derived for liquid
crystal systems, is constructed by collecting terms related to all
This journal is © The Royal Society of Chemistry 2014
modes of local deformation (bend, twist and splay) that are
allowed by the symmetries of the systems. It is oen used in
continuum models of self-assembled ribbons and membranes.
When modeling ribbons made of chiral elements, the func-
tional may contain terms which are linear in the components of
the curvature tensor, implying that bends and twists are
measured with respect to some “preferred” non-zero values. As
noted in ref. , these linear terms can result from the crystalline
structure of the aggregate and do not require the smectic phase
tilt. The membrane energy was there formulated as:

EHP ¼
ð
dS

�
1

2
keeCee

2 þ 1

2
kppCpp

2 þ kepCep
2 þ kGK � keeC0eCee

� kppC0pCpp � 2kepC*Cep

�

(4)

where Cij are the elements of the curvature tensor, kij are the
matching bending moduli, K is the Gaussian curvature with kG

being the matching bending modulus. Finally, C0e and C0p are
“preferred curvatures” along the ê and p̂ directions, and C* is a
“preferred twist” along these directions. Here p̂ is parallel to the
ribbon axis and ê is perpendicular to it, as in ref. 13.‡

Writing the elements of the bending term in eqn (3) with the
reference curvature [eqn (1)] leads to an expression similar to
eqn (4). The two functionals become identical if we make the
following denitions:

kee ¼ kpp ¼ kep ¼ kG

n
¼ Yt3

12ð1� n2Þ ;

C* ¼ ð1� nÞk0 sin ð2qÞ ; C0e ¼ �C0p ¼ ð1� nÞk0 cos ð2qÞ: (5)

These connections allow mapping between the parameters
that are determined by local interactions and the parameters of
the effective elastic plate theory. The special case q ¼ �45�

results in a ribbon which has zero spontaneous curvatures
along the ê, p̂ directions, and only possesses a non-trivial
spontaneous twist, as in the model described in ref. 13.
Results
The narrow/wide limits

We can now nd the equilibrium congurations by studying the
bending–stretching competition. We will consider the case of
an unconstrained thin strip, in which t � w � l, which is valid
in many chemical systems. In this range the leading contribu-
tion to the stretching energy takes the form (ESI2†):

Es f tw5K2 (6)

where K is the Gaussian curvature at the center line of the strip.
The leading bending term is of the form (ESI2†):

Eb f t3wkb � �bk2 (7)
Soft Matter, 2014, 10, 2733–2740 | 2735
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where b and �b are evaluated along the centerline of the strip.
One can see that the bending energy is dominant for thick

and narrow strips with a large spontaneous curvature, while
stretching is dominant in the opposite limit. These qualitative
observations are quantitatively expressed by a single dimen-

sionless parameter15§ ~w ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ð1� nÞ

t

r
. In the narrow limit

(~w� 1) the stretching term becomes negligible compared to the
bending term, and the system will therefore choose a solution
which obeys the reference curvature tensor �b. In the wide
limit (~w [ 1) the stretching term is dominant, and the system
will choose a solution that obeys ā, having K ¼ 0. The congu-
rations in these two limits can be computed analytically (see the
ESI in ref. 15). For ~w � 1 these are surfaces with negative
Gaussian curvature K ¼ �k20 and zero mean curvature k1 + k2 ¼
k0 + (�k0) ¼ 0 (minimal surfaces). For ~w [ 1 the surfaces are

cylindrical helices of radius
1

k0ð1� nÞ. In the intermediate

regime (~w of order 1) a minimum energy conguration that
contains both stretching and bending is chosen. The congu-
rations in this range are obtained by a two-dimensional nite-
element elastic numerical simulation (see ESI4†), from which
all numerical data presented in this work are taken.
Fig. 2 Global properties of equilibrium configurations of HES ribbons
at q ¼ 45�, as taken from the simulation. (a) Normalized radius (~r ¼
r$k0(1 � n)) and normalized pitch (~p ¼ p$k0(1 � n)) as a function of
normalized width ( ~w) for y ¼ 0 (blue) and y ¼ 0.5 (red). The sharp
morphological transition is clearly seen as a second order transition in
~r. (b) The two principal curvatures of the configuration (k1-down
triangles, k2-up triangles) as a function of ~w. In the narrow regime, the
two curvatures sum to zero (minimal surface). In the wide regime their
difference is kept constant, while one of the curvatures (and therefore
the Gaussian curvature) approaches zero.
Self-assembly equilibria for q ¼ 45�

For q ¼ 45�, which is the case in seed pods (Fig. 2), we have
found a critical value ~wcrit; as long as ~w < ~wcrit the ribbon attains
a twisted conguration, i.e. a straight midline and zero mean
curvature, though the principal curvatures vary. As ~w grows
above ~wcrit, the conguration becomes helical, as one of the
principal curvatures slowly diminishes in favor of the other
(Fig. 2b), and the radius of themidline's helical shape increases.
The value of ~wcrit ranges between 3 and 3.4, and depends on n.
The transition at ~w ¼ ~wcrit is a second-order transition in which
the conguration is continuously changed from twisted to
helical.

Unlike the case of a pod valve, in the self-assembled systems
the width of the ribbon (and hence ~w) is not externally dictated
and evolves in time. At long times, one will nd equilibrium ~w
that minimizes the total energy per unit ribbon length, which is
a sum of the elastic energy and the energy of intermolecular
chemical interactions (mainly hydrophobic interactions):

E ¼ Eel + Eint

The elastic energy per unit length of the HES ribbon is
obtained from our model (Fig. 3). In the narrow limit, it

approaches Eel ¼ Yk0
4t

640
w5 (Y represents the Young's modulus),

as in eqn (6). In the wide limit it approaches Eel ¼ Yk0
2t3

24
w, as in

eqn (7). For n ¼ 0, these relationships can be put in terms of the
§ The addition of the factor (1 � n) to the expression in ref. 15 generalizes it to
systems with any n.

2736 | Soft Matter, 2014, 10, 2733–2740
dimensionless energy ~E ¼ Eel

Yk0
3=2t7=2

and ~w as ~E ¼ ~w5

640
in the

narrow limit and ~E ¼ ~w
24

in the wide limit (different Poisson's

ratios change the pre-factors slightly). The energy is everywhere
bound from above by these two asymptotes (Fig. 3). The tran-
sition occurs in the neighborhood of ~w ¼ ~wcrit.

Assuming an abundance of molecules in the solution, the
interaction energy difference per molecule between the aggre-
gate and the ambient solution is roughly xed. This leads to a
(negatively) linear dependence of Eint on w{ in the form of

Eint ¼ �m0

a2
w where a is the typical molecule length scale and

�m0 is the chemical potential at the initiation of aggregation.
This gives the total energy per unit length:

Enarrow ¼ Yk0
4t

640
w5 � m0

a2
w

{ In fact, the interaction energy should include an additional term that is roughly
independent of the width to account for line tension. However, when the ribbon
width is much larger than the size of a single molecule this term is negligible.

This journal is © The Royal Society of Chemistry 2014
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Fig. 3 The dimensionless elastic energy per unit length ~E as a function
of ~w (for ribbons with q ¼ 45� and n ¼ 0, at different values of w, k and
t). In the narrow limit ~w � 1, the equilibrium configurations are twisted

~Ez
~w5

640
. In the wide limit ~w [ 1 the configurations are helical and

~Ez
~w
24

. The examples for the twisted and helical configurations are

obtained from the numerical simulation. The colors indicate the elastic
energy density (increasing from blue to red). Inset: the chemical
potential m as a function of ~w for three values of m0. Negative values
(solid line) drive widening of the ribbon, while positive values (dashed
line) drive narrowing. For m0 < mc (magenta) there is a unique twisted
equilibrium configuration (magenta dot). For mc < m0 < md (blue) there
are two possible equilibrium configurations, a twisted one (blue dot)
and a tubular one (widening of the helical ribbons will continue until
closing into a tube). For m0 > md (red) only tubular configurations are
stable.
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E ¼
�
Yk0

2t3 � m0

�
w

Fig. 4 (a) Normalized pitch of HES ribbons at different q. In all angles,
there is a bi-stability in the wide regime. The low pitch state (solid line)
is more stable than the high pitch (dashed line) due to boundary effects
only. (b) Ribbonsmade of latex bilayers demonstrating the two bistable
states [ESI1†]. The helix pitch angle is marked as j. (c) ~wcrit (the value of
~w in which the pitch is maximal) as a function of q. (d) The ratio
between the pitch angle and q for various values of q (the same color
code as in (a)). The sharpness of the narrow–wide transition increases
with q.
wide
24 a2

In the narrow limit, the elastic frustration is negligible
compared to the interaction energy, and the energy per unit

length becomes Ew/ 0 ¼ �m0

a2
w. Derivation with respect to the

number of molecules in the aggregate gives a negative chemical
potential �m0, which drives the widening of the narrow ribbon.
As the strip grows in width, its elastic energy increases sharply.
For small enough values of m0, the chemical potential

mnarrow ¼ a2
dEnarrow

dw
z

Ya2k0
4t

128
w4 � m0 will vanish at a nite

width (still in the narrow regime), making further widening of
the ribbon energetically unfavorable. The ribbon will then stay

at this constant width weqz
4
k0

� m0

2a2Yt

�1=4
in a twisted congu-

ration, and will never undergo the transition into helical
congurations (magenta curve in the inset of Fig. 3).

For larger values of m0, namely m0 .mch
Ya2k0

2t3

24
, the

asymptotic chemical potential mwide ¼ a2
dEwide

dw
¼ mc � m0 is

negative. Therefore, wide enough ribbons will further widen,
eventually becoming tubes (red and blue curves in the Fig. 3
This journal is © The Royal Society of Chemistry 2014
inset). Tube congurations will be stable. However, the

maximal chemical potential mmax ¼ max a2
dE
dw

� �
hmd � m0 is

larger than the asymptotic value. Therefore, in the regime
mc < m0 < md widening of narrow ribbons will become energeti-
cally unfavorable at some nite width, and a twisted congu-
ration will therefore be stable as well. Only for m0 > md will the
chemical potential of the system remain negative for any w,
driving the widening of the ribbon beyond ~wcrit in the helical
regime. The elastic energy will then have a linear dependence
on w and the chemical potential will approach the constant
value mwide ¼ mc � m0 < 0. Therefore, for m0 > md only tube
congurations will be stable (red curve in the Fig. 3 inset).
Hence, at equilibrium we may expect to nd either twisted
ribbons or tubes, but not helical ribbons. The value of md can
be found numerically from the elastic model. It is found
to slightly depend on n, ranging between z1.7 mc at n ¼
0 and z1.5 mc at n ¼ 0.5.

Transitions at q s 45�

We will now explore the case of q s 45� that may also be rele-
vant to some chemical systems. In that case, obeying �b does
not mean a twisted conguration (see ref. 15). Still, a narrow
to wide transition is observed. The bending-dominant and
stretching-dominant regimes are separated at a typical value of
~w, at which ~p reaches its maximum (Fig. 4a – solid lines). As in
Soft Matter, 2014, 10, 2733–2740 | 2737
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the case of q¼ 45� (Fig. 2b) the bending dominated surfaces are
close to minimal surfaces, while the stretching dominated
congurations are close to surfaces with K ¼ 0. As q approaches
45� the transition becomes sharper and ~wcrit increases (Fig. 4c).

The transition's dependence on q can be made clearer by
looking at the ratio between the pitch angle of the equilibrium
conguration and the angle q. Analytical solution predicts (see
the ESI in ref. 15 and 22) that for ~w� 1 this ratio equals 2, while
for ~w[ 1 it equals to 1. These predictions are conrmed by our
simulations for q ranging from 15� to 45� (Fig. 4d). The width of
the crossover strongly depends on the value of q and becomes
sharp only at q ¼ 45�.

Another interesting phenomenon found at any q s 45� in
the wide regime is the bistability of congurations.15,23 In this
regime, the ribbon can settle in two possible stable congura-
tions, in each a different face is on the outside. A crossover
between them requires an inside-out ipping of the helix. Each
of the possible congurations fullls a different principal
curvature. For specic parameters w, t, q, k0 the two congura-
tions differ in their pitch and radius, but share the same
handedness. In the wide limit their pitch angles add to 90�.
Therefore, the pitch difference between the two congurations
decreases as q approaches 45�. Naively, these states would have
the exact same elastic energy. In practice, these states differ in
the elastic energy of their boundary layer,24 where the state of
lower pitch angle is energetically preferable. The other state is
always stable at the wide limit, but destabilizes as ~w approaches
~wcrit (Fig. 5a).
Shape transforming gel models

Amacroscopic mechanical HES can be constructed from a NIPA
responsive gel; we prepared a mold that consists of two glass
plates separated by a 0.5–1.5 mm gap. Two perpendicularly
oriented arrays of non-stretchable strings (cotton sewing
threads) are positioned inside the gap, close to the upper and
lower plates (Fig. 5a). The solution of NIPA components is
injected into the gap and polymerized into a gel with the strings
embedded within it. Homogeneous NIPA gels shrink
Fig. 5 HES models made of a NIPA gel. (a) Two arrays of cotton
strings, red and blue, are layered perpendicularly to one another in a
flat mold. The mold is filled with NIPA solution. (b) A strip is cut from
the polymerized gel sheet at a chosen angle q. (c) The composed
material gains curvature with temperature, as the gel shrinks but the
strings do not. (d) A small enough disk cut from this sheet becomes a
saddle upon heating. (e) A strip cut at q ¼ 45� is gradually heated in
water. The originally flat strip transforms to twisted and then to helical
ribbon and finally closes into a tube.

2738 | Soft Matter, 2014, 10, 2733–2740
isotropically when heated beyond a temperature of �33 �C.25,26

In our composed sheet, the strings prevent local shrinkage of
the gel along their longitudinal axis, just like bers in a drying
seed-pod tissue. As a result, each of the sheet's faces shrinks
uniaxially. The shrinkage axes of the top and bottom faces are
perpendicular. The result is a at ā and a saddle-like �b [eqn (1)],
whose k0 is a function of temperature (Fig. 5c and d). We cut
strips in different widths and directions from this responsive
gel (Fig. 5a and b). The ribbon conguration changes upon
heating, demonstrating the travel of such systems in parameter
space.

A demonstration of the predicted twist-helix-tube transition
for q ¼ 45� is shown in Fig. 5e and in M2†. Note that in this
system changing the temperature alters ~w through the variation
of k0 (mainly), w and t, while in chemical self-assembled
systems it is probably only the increase in w which alters ~w.
However, this experimental system accurately demonstrates the
change of conguration in terms of the relevant dimensionless
parameter ~w, which can be computed for every temperature.
Specic system predictions

Using our theoretical modeling (Fig. 2, 3 and 4) and experi-
mental system (Fig. 5) we can derive qualitative and quantitative
predictions for shape selection in self-assembled systems. In
the following section we analyze published data from different
chemical systems that are of HES type.

Gemini surfactants with tartrate as counterions. We start
with a well studied system of Gemini surfactants with tartrate
counterions, as described by Oda et al.8,27,28,29. This system
displays rich morphological transitions: narrow ribbons
become twisted, then helical and nally turn into tubes. It is
constructed from bilayers of amphiphiles with controllable
amounts of right- and le-handed tartrates. The elements self-
assemble into ribbons with their spontaneous twist directed
along the ribbon's long axis.29 In our terminology, these ribbons
are HES with q ¼ 45�. The width of the ribbons grows in time as
the ribbons assemble until reaching an equilibrium
conguration.

In this system, a controlled parameter is the enantiomeric
excess (ee), which is the relative concentration difference

between le-hand and right-hand counterions (ee ¼ CL � CR

CL þ CR
).

In our terminology, this parameter determines k0, via some
monotonic relationship that can be made quantitative by
measuring the equilibrium congurations at different ee's (see
ESI3† and Fig. 6 of ref. 28). The enantiomeric excess also
changes the thickness t, as explained in ref. 30. In that sense,
this system is very similar to our gel models in which ~w is
changed mainly via changing k0 and t. Indeed, as in the gel
models (Fig. 5), this system undergoes a full four state transi-
tion: at to twisted to helical ribbons and to tubes.8,28

When ee ¼ 0 the system assembles into large at sheets.29

This observation is consistent with the identication of this
case with k0 ¼ 0, and therefore the ribbons are not frustrated
and can grow to very large (innite) width. When ees 0 twisted
ribbons are formed. The sign of ee dictates the sign of k0, and
This journal is © The Royal Society of Chemistry 2014
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therefore the handedness of the ribbons. As their width
increases, the twisted ribbons turn into helical ones and then to
tubes. Most experimental observations are consistent with our
predictions.k For example, at ee ¼ 0.8 our model predicts that
the twisted to helical transition should occur at w y 70 nm, a
prediction that seems to be in agreement with the reported data
and images.

As argued (Fig. 3), for m0 > md the strips will equilibrate in a
tubular conguration and for m0 < mc in a twisted conguration.
In ref. 28, it seems that the entire experiment of modifying ee at
35 �C was held above those critical values. In the second
experiment in ref. 28, ee ¼ 1 was xed and the temperature was
varied from 40 �C to 35 �C, and back to 40 �C. This resulted in
switching of the equilibrium congurations from twisted to a
tube, and back to the twisted form. Raising the temperature is
qualitatively equivalent to decreasing m0. The reported transi-
tions upon changing the temperature are therefore consistent
with our predictions (Fig. 3), where the crossing of md is
responsible for the twisted / tube transition and the crossing
of mc is responsible for the tube / twisted transition. A careful
measurement of the congurations as a function of tempera-
ture during that cooling/heating process should reveal the
hysteretic nature of these transitions. We further predict that
varying ee from 1 to 0 and back while keeping a xed 40 �C
temperature will demonstrate the same transitions (via
changing mc,d rather than m0).

Finally, the experiment shows that direct thickening of the
ribbons (via increasing the surfactant carbon chain length)
results in an increase of the tube radius. We suggest that this is
because in these systems k0 is directly related to the thickness
(k0 f 1/t, see the ESI in ref. 15), in the same way as in the gel
models.

Pseudopeptide c12-b12. Another relevant reported system is
that of pseudopeptide c12-b12. This system, which is also a HES
with q ¼ 45�, was used for a detailed quantitative study of the
twisted to helical transition (Fig. 1a).6,19 Experimental data
identify the twisted-to-helical transition point at ~wz 2.9. As the
measured thickness may somewhat differ from the elastic
thickness, this result is consistent with our predicted ~wcrit z 3–
3.4. The predicted pitch values at the transition point and in the
wide limit reasonably t the reported values observed in the
experiment. The pitch in the narrow limit reveals that the
effective Poisson's ratio of the system is close to 0.5. This
implies that in the Helfrich terminology (eqn (4)) the Gaussian
curvature rigidity kG is about half the bending rigidity (eqn (5)).

A second population in this system does not go through the
transition and exhibits higher pitches in the observed widths.
According to our model this population has a smaller k0.

Amyloid brils. Various systems of this class have been
studied by Adamcik et al.9,14,31 In all of them we see the full
transition typical for q ¼ 45�. The transition, as theory predicts,
involves widening of the twisted ribbon, along with an increase
k In the experiment these transitions were only observed at ee > 0.6. This
observation is in contrast to our predictions. It is possible that the transitions
were not observed at low ees because lowering ee increases the transition width
and reportedly slows down the process kinetics.

This journal is © The Royal Society of Chemistry 2014
in the pitch (“unwinding”). Beyond a critical width there is a
transition to a helical conguration along with a drastic drop in
the pitch (as predicted in Fig. 2a), and eventually the formation
of a tube.

It is worth mentioning here also helical ribbon systems that
are probably not governed by HES, like cholesterol in bile, as
reported in ref. 3, 32, and 33. Apparently, in order to explain the

reported phenomena, a single-curvature-shell b ¼
�
k0 0
0 0

�
is

sufficient. Such systems are not elastically frustrated.
For future analysis of specic systems, it is helpful to note

that in order to fully calibrate our model it is enough to know
the ribbon thickness, the tube diameter, and the pitch in the
wide and in the narrow limits (ESI3†).
Conclusions

We presented a model that provides quantitative predictions for
equilibrium congurations of self-assembled chiral nano-
ribbons. The inputs to the model – assembly direction,
geometrical and mechanical characteristics of the building
blocks – are converted into parameters of elastic sheet theory.
Assuming the isotropy of the elastic tensor, the model uses only
three material parameters: Young's modulus, Poisson's ratio
and reference curvature (k0).

The analysis shows how the chirality of the micro-elements
and the macro-structure can differ in value and in handedness
(the same micro-elements can assemble into both le- and
right-handed macro-structures, depending on the growth
direction q). Another implication is the fact that twisted
elements can assemble into a purely curved structure and
curved elements can create purely twisted structures.

Our work provides new quantitative tools for the analysis of
self-assembled chiral ribbons. Specically, we generate
universal curves for the shape (Fig. 2) and energy (Fig. 3) of a
ribbon. These provide quantitative predictions for many
morphological characteristics, such as pitch, radius, twist-to-
helix transition and bistability of helical congurations, for any
ribbon width and growth direction q. In addition, we provide a
quantitative criterion for the arrest of ribbon widening. This
arrest is a direct outcome of the geometrical frustration of the
system, which causes a sharp dependence of the chemical
potential on the ribbon width. That same frustration is what
drives the twist-to-helical transition itself.

Our model also provides tools for future analyses such as
shape distributions at nite temperatures and supramolecular
growth rates. Finally, the formalism can be used to design a
chemical system that will spontaneously create a desired macro-
structure.
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